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ANNULAR SLIT COLLOID  THRUSTER 
RESEARCH AND DEVELOPMENT 

by 

Kenneth W. Stark 

and 

William A .  Burton 

Goddard  Space Flight Center 

INTRODUCTION 

The  development  and  operational  feasibility of the  higher  thrust  annular slit colloid 
thruster  has  been  previously  reported  (References 1 and 2). Research  in  the  optimiza- 
tion of performance and further  study of the  performance  characteristics  associated  with 
this new geometry  were  the  next  tasks  to  be  undertaken. 

During  this  research, it was  observed  that good performance  was  normally  accom- 
panied  by a visible glow emanating  from  the  annulus.  This  behavior  has  been  termed 
"glow spray".  Because  the  cause  and effect relationship of the glow spray  were unknown, 
it was  decided  to  try  to  obtain  the  required  performance  in  the  absence of glow spray. 

It was  reasoned  that  the glow intensity  was  dependent upon the  propellant  vapor 
background  in  the  vacuum  chamber;  therefore, new propellant  solutions  with  vapor 
pressures  lower  than  that of the  standard  NaI-glycerol  solution  were sought.  Also, 
reduced  propellant flow rates were employed. 

ANNULAR THRUSTER DESIGN THEORY 

The  exact  equation  for flow through a concentric  annulus  (Reference 3) (Figure 1) is 
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Figure  1-Concentric  annulus  diagram. 

However,  this  equation is awkward to  use  for  thruster  design  since  normally the desired 
flow rate Q i s  known and the  annular gap Rz-Rl and radius Rt are the   t e rms  to  be  deter- 
mined. 

AS an  alternative,  the  simplified  and  more  practical  expression  (Reference 4) 

APT R, h3 
&= 

6 d  

is used. 

It can  be shown  that if a series expansion is substituted  for  In R2/R1 in  Equation 1 
and h is set  equal  to R2-Rl in  Equation 2 ,  the two equations are equal when R2 
approaches Rl.  
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Figure 2 is a series of parametric curves relating mass  flow rate to  the  ratio R / l .  
In  this case the  annulus  serves as the  flow-controlling  orifice;  however, as described 
later in the  report ,  flow rates were  required  that  were  much  lower  than would be 
practical  to  control  through  an  annulus.  In  some cases, therefore, it is necessary  to 
use a flow control orifice upstream  rather  than depend on  the  annulus  for flow  control. 
The  annulus  gap still remains critical at the  rims  because  spraying  occurs  there  and 
one of the critical factors  in  performance is to  minimize  the  residence  time of the 
propellant  surface  exposed  to  the  vacuum.  The  reasons  for  this  will  be  explained later 
in  this  report. 

Figure 3 is a graph of ISp   ve r sus   sou rce  voltage at various q/m's. Figure 3 is an 
idealized  relationship  showing  the  particular  minimum  voltage  necessary  to  obtain a 
given q/m and Isp. In  reality,  performance  also  depends upon thruster  geometry, 
material  erosion,  propellant  properties  such as conductivity,  vapor  pressure,  viscosity, 
and  surface  tension,  and  extractor  configuration  and  voltage. As yet it has  been  impos- 
sible  to  relate  these  various  parameters  either  theoretically or  empirically  in a reliable 

' and  meaningful  equation.  To  date  then,  the  most  practical way  of designing a colloid 
thruster  is to  use  the  data  available  from  existing tests and  the  basic flow equations. 
This  results  in a hybrid  thruster  in which all previous  data  were  used as design  guides, 
which makes  it  possible  to  pursue  further  testing  in  the  continual  refining  process of 
colloid  thruster  evolution. 

Table 1 lists the  original  design  parameters  for  both  the  small  and  large  annular 
thrusters  obtained  from  Equation 2.  Figures 4 and 5 are photographs of the  large  and 
small  annular  thrusters,  respectively.  Table 2 lists  the  original  performance  goals 
for  both  thrusters. 

DATA  REDUCTION 

Ideally,  the  optimum  procedure  for  testing  and  evaluating  thruster  performance 
would  be to  use a direct  thrust  measurement  system  and  an  absolute flow measuring 
device.  Unfortunately, at this  time,  suitable  means  for  direct  measurement o€ thrust 
and  flow rates  for  these  experimental  laboratory  models are not  available. 

Present  methods of reducing  data  use a technique  developed early  in  the  history of 
colloid  thruster technology (References 5 and 6). Basically,  this  method  employs  the 
t ime of flight  (TOF) trace, which is numerically  integrated  to  yield  thrust,  specific 
impulse,  charge-to-mass  ratios,  efficiency,  mass flow rates,  and  average  particle 
velocity. 

A TOF trace is obtained  by  the  simultaneous  grounding of the  thruster  voltage  and 
the  recording of the  collector  current  decay  curve  caused by the  particles  in  flight after 
grounding. A typical  TOF  curve is shown  in  Figure 6 .  
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Table 1 - Thruster  design  parameters. 

Small 

Large 

0.0400 

.3800 

R2 
(in.) 

0.0422 

.3815 

1 
(in.) 

1.5 

1.0 

fit Material 
(lb/sec) 

1.6 X 10 

20Cb-3 stainless  steel 1.11 x 10 

20Cb-3 stainless steel 

. . . - ~ ~ 

F igure  4-Large  annular  thruster. 
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Table 2 - Original  performance  goals. 

Thruster ISP d m  
.__ - 

size (se4 ( P Ib) (C /kg) 
- . -~ 

Small 

900 1000 3000 Large 

900 3000 

( b) 
Figure  5-Small  annular  thruster,  (a)  side  view, and (b) front  view. 

t 

t 
+f 

Figure  6-Typical  t ime of flight (TOF) trace. 



A computer  program  was  written  for  the  reduction of data  obtained  from  the TOF 
curves.  This  program  computes  the  colloid  thruster  performance  parameters  from 
inputs of sets of points of current and .time.  These  points are obtained  from  enlarged 
photographs (8 in.  by 10 in.) of the  original  oscilloscope  picture (3 in. by 5 in.). 

The sets of points are used  in  the  program  to  evaluate  numerically  the  integrals 
required  for  the TOF equations, 

x, = "Ld  t 

and 

The nurn .erica1 method  selected  for  the  evaluation of th  .ese integrals is Simpson's  one- 
third  rule. 

Once XI and X, are calculated,  the  program  computes  the test performance  para- 
meters  by the  standard TOF equations. 

2 v  

C d 
S = -  

4 v  
f i  = -  
C d2 

S x2 

r 
1 

ACMR = - C 

?it 
C 

rl, = 

2 
TC 

2 v  I m c  
s c  
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LABORATORY APPARATUS ANDTESTPROCEDURE 

Horizontal  Firing 

During  the  initial series of tests on the  annulus  thruster,  the  laboratory test setup 
was  essentially  the  same as that  used  with  the  capillary  needles  (Reference 2). Figure 7 
shows  the  basic  testing  apparatus with  the  collector  and  thruster  mounted  in a horizontal 
position.  The  feed  system  shown  proved  to  be  satisfactory  and was  maintained  essen- 
tially  unchanged  throughout  the  annulus  testing  program. 

VACUUM  STATION 

NITROGEN 

Figure  7-Basic  testing  apparatus  diagram.  The  collector  and  the  thruster  are  mounted  in  a  horizontal 
posit ion. 
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Initial test data taken  with  this  orientation were characterized by poor q/m and low 
collector  and  screen  currents  relative  to  input  current  values.  This  type of performance 
indicated  poor  particle  distribution  with  large  beam  divergence angles. Further  testing 
showed  the  beam  to  be  impacting on the  lower  portion of the  collector  with  deposits of 
propellant  accumulating on  the  chamber  wall  below  the  collector.  This  evidence  indicated 
that  the  meniscus  and  the  beam  trajectory  were  being  affected by gravitational  force 
because of the  horizontal  orientation of the  thruster.  Attempts  to  focus  the  beam by 
incorporating  various  configurations of focusing  electrodes  were  unsuccessful  because 
of the  effects  these  devices  had on field  intensity  and  concentration at the  emission site. 
It  was  decided at this  point  that  further  testing would necessitate a change  in  the  thruster 
orientation  to  the  vertical. 

Vertical  Firing Downward 

Figure 8 shows  the test setup, a cross  configuration  vacuum  chamber  with  the  thruster 
mounted  pointing  downward  for a vertical  firing  orientation.  Propellant  mixture  and 
voltage  parameters  were  essentially  the  same as in  previous tests. 

PROPELLANT FEED  TUBE 
\ 

FEED To u 
SYSTEM 

Figure  8-The  cross-configuration  vacuum  chamber. The thruster  is  mounted  in a 
ver t ica l   pos i t ion.  
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Preliminary tests showed  that  excessive  arcing  and  corona  discharge  occurred  in 
the area of the  thruster  and  extractor , which  in  turn  caused erratic collector  currents. 
It was  reasoned  that  the  cause  was a buildup of pressure  in   the area of the  thruster.  
Chamber  pressures  recorded  by  the  ionization  gauge  were  within  permissible  limits. 
However,  because of the  physical  location of the gauge relative  to  the  thruster,  these 
values  were not necessarily  representative of those at the thruster  site. This   pressure 
differential  was  apparently  caused  by  the  accumulation of particles  that  had  rebounded 
from  the  collector  to  the  thruster area. These  particles  were not evacuated,  efficiently 
because  the  collector  acted as an  obstruction  to flow to  the  vacuum  port.  Grounded 
aluminum  foil  was  used  on  the  chamber  walls  near  the  beam  path  in  an  attempt  to  collect 
these  particles.  The effect was  negligible. A screen  collector  was  also  tried  but  proved 
to  be  excessively  noisy  because of external pickup  due  to  the absence of a surrounding 
shield. It was  concluded  from  these tests that due to the  higher flow rates used  with 
the  annulus  thruster  and  the  relatively low pumping  capability of the  vacuum  system, 
the  thruster  should  be  located as close as possible  to  the  pumping  port. 

Vertical Firing Upward 

A standard  bell jar vacuum  chamber was  used  to  facilitate  vertical  firing  with  the 
thruster  close  to  the  vacuum  port  (Figure 9). The  port  was  directly below the  thruster. 
Several  problems  occurred  in  initial tests with  this  setup.  The  portion of the  feedline in 
the  chamber  that  runs  parallel with the  base  plate  was  bombarded by secondary  particles. 
The  bombardment  caused  localized  heating,  which  affected  the  propellant  viscosity  and, 
in turn,  the flow characteristics.  This  situation  was  remedied by  the  installation of a 
shield  for  the  feedline  in  this area maintained at the  negative  extractor  potential. 

Preliminary  TOF  traces showed  high-amplitude  noise sp ikes  and  excessive  over- 
shoot.  After a series of tests  it   was  determined  that  the  thruster  collector  support  rod 
was not properly  grounded,  which  induced  radiative effects. More  effective  grounding 
of this  rod  alleviated  the  problem. 

It was  also found that  clamps  used  to  attach  the  thruster  and  collector  to  the  suppprt 
rod  were  arcing  badly.  Inspection of the  clamps showed them  to  have a nonconductive 
coating,  which  apparently  caused a charge  to  build up as they  were  impacted by  the 
charged  particles.  The  buildup, after reaching a certain  level, would discharge  through 
the  coating  to  the  grounded  conductive  core.  Replacing  these  clamps  with  uncoated  ones 
prevented  further  arcing. 

There  were no further  problems  associated with this test setup,  and it was  used  for 
the  remainder of the test program. 

Time of Flight Techniques 

Bal l  Zapper 

The  term ' I  Zapper, I t  as used in this text, refers to  the  apparatus  used to short  the 
thruster  voltage  to  ground  during TOF trace initiation.  The  original  TOF  zapper  circuit 
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VACUUM STATION 

Figure  9-Diagram  of  the  standard  bell jar  vacuum  chamber used t o  facil i tate 
vertical  firing. 

is shown schematically  in Figure 10. This is a spring-loaded  push  rod  type  of  mechan- 
ical switch  that  uses  stainless steel balls as shorting  contacts.  Load  resistors  were 
incorporated  to  prevent  the  high-voltage  power  supply  from  being  overloaded  during 
shorting.  This  unit  operated  satisfactorily as long as collector  currents  were of a high 
enough level  to  maintain  oscilloscope  input  sensitivity at 10 mV/cm or  lower.  Charac- 
teristic TOF  "dead  times"  under  these  conditions  were 7 to 12 psec  (Figure 11) with a 
trigger  transient  apparent. Dead time is defined as the  period  between  shorting  the 
thruster  voltage  to  ground  and  the  beginning of the  TOF  current  decay  curve. As oscillo- 
scope  input  sensitivity  was  increased  above 10 mV/cm,  the trigger transient  saturated 
the  preamplifier  and  caused  the  dead  time  to  increase.  Collector  currents at this  time 
were of sufficient  magnitude  to  enable  the  oscilloscope  input  sensitivity  to  be  maintained 
at the  lower  levels.  However,  in  subsequent  testing  these  levels  decreased,  and it was 
necessary  to  devise a more  efficient  zapping  method. 
12 



7.5 Ma 
+ H.V. IN 5 w  OUTPUT 

_L .001 wF, 5 kV 1 (TYPICAL) 

I 
1 

T 

SPARK GAP 
SWITCH 

9 bt 
Figure 10-Ball zapper circuit. 

Figure 11-TOF trace of AS-48-2. V ,  = 21.5 kV, 1,  = 140 PA, 
i = 10 pA/cm, and the  sweep  was 20 psec/cm. 
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Thyratron Zapper 

Figure 12 is a schematic  diagram of the f inal  version of the  thyratron  zapper  unit 
used  in  the latter stages of testing. , Operation of this  unit  depends  on  short  circuiting 
the  high  voltage  to  ground  through  the  thyratron by biasing  the  control  grid  to start 
conduction.  This  method of operation  eliminates  the  arcing  and  consequent  radiation 
associated  with  the  shorting of the  high  voltage  through a mechanical  switching  device. 
Essentially,  this  eliminated  the  transient effects of the  ball  zapper  previously  used,  and 
consequently  collector  current  amplitude  ceased  to  be a major  factor  in  dead  time  varia- 
tions.  Testing  conducted  with  this  zapper  unit  resulted  in  TOF traces with  dead  times 
of 5 to  10 psec. Redesign of the  collector  configuration  to  permit  the  collector  to  be 
completely  surrounded by a grounded  shield  resulted  in  further  reduction of this  dead 
time  to  3  to 5 psec (Figure 13). The  final  version of the  collector  configuration is 
shown  in  Figure  14. 

+ 300 V(dc) 

THYRATRON 

Figure  12-Thyratron  zapper  circuit. 

RESEARCH PROGRAM AND RESULTS 

Fifty-eight  tests  investigating  performance,  material  compatibility,  propellant 
combinations,  thruster  geometry, test setups,  and  TOF trace shorting  circuits  were 
run.  The test setups  and  TOF  circuits  have  been  discussed earlier. 

14 



Figure  13-TOF trace of  AS58-2. V, = 17.5 kV, I ,  = 
100 pA, i = 5 pA/crn,  and the  sweep  was 10 psedcrn .  

Performance  indicated by TOF  data  reduction are tabulated  in  Table 3 .  In tests 
AS-10 through AS-29 thruster  orientation within  the  vacuum  chamber  was  varied,  and 
several  extractor  and  focusing  geometries  and  other  variables  were  tested. 

Rather  than  describe all the  individual  debugging tests conducted,  the  results of 
these  investigations  will  be  listed as they  applied  to  the f ina l  conditions  under  which  the 
majority of tests  were conducted. Any variations  from  these  will be  pointed out during 
the  discussion of the  appropriate  test.  Generally, tests AS-10 through AS-29 resulted 
in  the  remaining tests being  conducted  under  the  following  conditions: 

(1) All metal  clamps  and  holders  in  the  vacuum  chamber  were  conductive without 
insulating surface coatings. 

(2) All  fixtures  and  items  necessary  to  thruster  performance  inside  the  thrust 
chamber  were  either  biased at a given  voltage o r  grounded. 

(3) Extractor  voltage  was set a t  -2000 V .  

(4) The  diameter of the  aperture  in  the  extractor  plate  was 0.334 in. 

(5) The  inner  shaft  was  recessed from 0 ,002  to  0.005 in.  below the  outer  rim of 
the  thruster. 

(6) The  thruster  operating  orientation  within  the bell jar was  vertical,  spraying 
upward. 

(7) A gold-plated  melamine  collector was used  through test AS-55. In  subsequent 
tests, a stainless steel collector  with  grounded  screen was used. 
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Figure 14-Stainless steel shielded collector assembly. 
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Table 3 - Summary of AS thruster tests. 
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Table 3 - Summary of AS thruster tests (Con.) 
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(8) The  screen  was  biased at +45 V through test AS-55. 

(9)  A ball  zapper  circuit  was  used  through test AS-55. Subsequently, a thyratron 
zapper  circuit  was  used. 

(10) The  thruster  was  unplated 20Cb-3 stainless steel up  through test AS-48. 

Of the 10 conditions  listed  above,  the  eighth  needs  to  be  further  explained.  Normal- 
ly  the  screen is biased at a negative  voltage  to  suppress  secondary  electrons  emitted 
from  the  collector upon impact by a colloid  particle.  This  biasing  prevents  fictitiously 
high collector  currents  and  electron  bombardment of the  thruster.  However,  during 
test AS-29 it was  observed  that I ,  decreased  and  eventually  went  negative  when V' was 
raised above 15 kV and  when Vscr was  lowered  from -45 V to -90 V. A possible  expla- 
nation is that as V, is increased,  particle  velocity is increased.  These  higher  energy 
particles release more  electrons upon impact at the  screen  and  collector.  Therefore, 
if  the  net flow of electrons is increased  towards  the  collector, IC is reduced.  This is 
very  probable  because  the  collector is positive  with  respect  to  the  screen.  Also, as 
Vscr is biased  further  negatively,  the  collector  appears  more  positive with respect  to 
the  screen  and  thus attracts more  electrons. 

It was  theorized  that if Vscr were  positive,  there  should  be no  problem  with  negative 
4 ' s  due to  reversed  electron flow. 

Test AS-30 was  conducted  to  determine  the effect of positive Vscr on performance. 
Figures 15 and 16 are plots of current  variations as Vscr is varied  from -90 V to  +90 V 

for  source  voltages of 16.25 kV and 17.75 kV. In  both  figures, as Vscr approaches 
-90 V , I ,  goes  to  zero or  negative  current. When TOF traces were  attempted  in  this 
regime,  excessive  noise  made  acceptable  TOF traces impossible.  However,. as Vscr 
was  varied  between  ground  and +90 V, I, remained  constant. In  both figures  the  sum 

of Iscr and IC varies  approximately 20% of its maximum  value  from -90 V to "90 V of 
Vscr. However,  the  difference  between Iscr + I, taken at Vscr of +45 V and -45 V 
was 7% in figure 15 and 2%  in Figure 16. At these  points,  the  comparison TOF t races  
were  taken. In  both figures I' drops off at each  extreme of the Vscr variation. A pos- 
sible  explanation  for  this is that  in  the -45 V to -90 V Vscr range,  the  number of elec- 
trons  that  normally would leave  the  screen  and  collector  to  impact on the  positive  feed- 
line  and  thruster is reduced. Also,  in  the +67 V to +90 V Vscr range, it is possible 
that  some of the  positive  charges are repelled  to  the  feed  system, which causes a 
slight  current  reduction. 
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Figure  15-Current  variations  versus Vscr for AS30 at V s  = 16 250 V. 
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In  addition,  TOF traces were  taken at a Vscr of +45 V and 4 5  V to  determine  the 
effect  on  performance.  Data  from test points AS-30-4,  30-5,  30-13, and 30-14 are 
tabulated  in Table 3 .  

If one considers  the Vscr extremes at which  these  data  were  taken,  the  results are 
not  unlike  the  variations  observed  in  performance  under  constant  operating  conditions. 

280 I- 
260 t 
240 

"" 4"' 

180 

160 

140 

Figure  16-Current  variations  versus I/,,, for AS30 at V S  = 17 750 V 
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Thruster Performance Testing 

Tests  AS-31 through AS-35 were  conducted for the  purpose of thruster  evaluation. 

Test points AS-31-1 through 31-6 were  taken 1 hour  apart  during a continuous  per- 
formance of 5 hours. It was  observed  for  the  first  time  that  both  the  screen  and  collec- 
tor  glowed,  although  glow  spray  from  the  thruster  was  not  seen. Test point AS-31-8 was 
taken  with  the  collector  and  screen  joined  together  electrically.  Points AS-31-10 through 
31-14 were  taken at 1-kV decrements of VS. At 13 kV both IC and Iscr were erratic. 
During  this last set there  was no noticeable  screen  or  collector  glow.  Examination of the 
thruster after the  run  showed no erosion (Figure 17).  

Figure  17-Annular  rims after AS-31. 

Test AS-32 was  conducted  in  an  attempt  to  reduce  the Is/& ratio,  which would 
imply  improved  beam  focusing.  Figure 18 depicts  the  focusing  arrangement  used. 

, Test  points 32-1 through 32-6 were  taken,  and  the  reduced  data  showed a slight  improve- 
ment  in  the  current  ratio  (Figure 19).  However, a decided  reduction  in  overall  perform- 
ance  resulted  (Figure 20).  Test point 32-8 was  operated at Vscr= +90 V with  essentially 
the  same  performance as test point 32-6. 

Test AS-33 was  conducted  for two reasons:  The first was  to see the effect of VS 
variation on performance;  the  second,  to see how well  the  thruster would perform  during 
a 4-hour test. Test points 33-1 to 33-5 were  taken 1 hour  apart  during  the  operation. 
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Figure  19-Current  ratio  versus  time. V ,  = 18 kV, Vext = - 2 kV, 
and V,,, = + 45 V .  
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Figure  20-Performance  curves  versus  time. V ,  = 18 kV,  VeXt  = - 2 kV,  V,,, = + 45 V, and  propellant 
No. 20 w a s  used. 

As  can  be  seen  from  Figure 21,  the  ratio of source  to  collector  currents is slightly  less 
than 3 during  this  time,  which  indicates good  focusing.  The  performance  during  this 
time is shown  in  Figure 22 and is relatively  stable.  Data  from  the VS variation test 
points are plotted  in  Figures 23 and 24. An interesting  relationship  between 5 ,  I,, and 
IC + Iscr is shown  in  Figure 23. As VS is increased, IS and IC + I s c r  rise almost 
linearly;  however, when compared  to the performance  curves  in  Figure 24, the  only  effect 
appears  to  be  an  increased flow rate ,  which  resulted  in  increased  thrust.  Another  impor- 
tant  result of the VS variation  shows  that  the  ratio i& /IC remained  fairly  constant , again 
an  indication of good  focusing.  Test  point 33-14 was  operated at a feed  pressure of 135 
mm Hg resulting  in a flow rate  of 4 . 6 5  x lb/sec.  The  resulting Isp and q/m at this 
point  were  reduced  to 496 sec and 663 C/kg,  respectively,  indicating  that flow rate con- 
trol   has a greater  effect on  performance  than V ,  control. 
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Figure  21-Current  versus  time for AS-33-1 to 33-5. 

At a V, of 20 kV , a visible glow spray was noticed at  the  thruster  rim.  However, 
examination of data at these  points  showed  that no apparent  discontinuity  had  been 
introduced  into  the  data. Two conclusions  could  be  drawn  from  this:  The  first is that 
glow spray  existed  to  some  extent  throughout  the test; the  second,  that glow spray had 
no effect on total  performance. A more  complete  discussion on this  will  be  presented 
after tes t  AS-35. Examination of the  thruster after the test showed no increase  in 
erosion  (Figure 25).  
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As a result  of the thruster  performance  in AS-33 AS-35, an  extended  duration life 
test of 120 hours, was conducted.  The  main  control  function  attempted  during  this test 
was  to  maintain VS so that  glow spray would not  be  sustained. Up through test point 
35-6 this  was  possible.  At  points 35-7 and  35-9,  the thruster  had to  be  idled at about 
8 kV for  20 minutes  to  regain  stability  and  eliminate glow spray. At test point  35-9  and 
above, glow spray  could  no  longer  be  eliminated  by  reducing  the  voltage  which  resulted 
in  the  remainder of the  tests  being  conducted  with glow spray with V, varying  from  15.75 
kV to 18 kV . A s  is shown  in  Figure 26 performance  during  the  entire test was  quite 
unstable. A s  seen in  Figure  27,  the  only  stable  parameter  was  the  ratio of IS / ( l c+ I sc r )  , 
which varied  between  1.7  and  2.5. 

Test points 35-18 through  35-21  were  conducted  with  increasing  feed  pressures, 
which resulted  in  increased q / m  and  Isp.  This  result is contrary  to  what  one would ex- 
pect  and is attributed  to  the  increased glow spray  raising  the  propellant  temperature, 
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which  caused a larger percentage of propellant  to  vaporize  and not to  be  reflected  in  the 
TOF h c  data  reduction.  Examination of the thruster  later showed  some  erosion of the 
outer  rim (Figure 28) , and  large  deposits  were  noted on the  tapered  portion of  the  outer 
rim  (Figure 29). 

A  decision,  therefore, had to  be  made  with  respect to glow-spray  operation. 
Although  high but erratic performance  was  obtained  during  this mode of operation,  the 
cause  and effects of the glow spray  were  mknbwn.  Several  hypotheses are suggested as 
the  cause o r  possible effects of the glow spray.  The first is that  the glow spray is the 
result  of electrons'  leaving a surface,  e. g. , collector,  screens , or  chamber  walls, 
because of particle  impact  and  returning  to  the  thruster, which return  causes a self- 
sustaining  action.  The  second  suggests  that  the  glow  spray is due to  high-velocity  parti- 
cle impact  with a local  atmosphere  caused by  propellant  vaporization near the  thruster.  
A third  hypothesis  attributes  the glow to  interparticle  collisions.  The  fourth  hypothesis 
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Figure 25-Annular r i m s  after AS-33. 

suggests that  the glow spray  caused  excessive  local  rim  heating  and  lowered  the  propel- 
lant viscosity  and  resistivity, which  then  perpetuates  the  glow  phenomena. 

After  consideration of all four  hypotheses,  the  third  was  rejected as a possible 
cause of glow spray that would affect the  satisfactory  performance of the  thruster. If 
the  first,  second, or  fourth  hypotheses  were  true,  however,  they would affect the  per- 
formance of the  thruster  and  cause  the  recording of erroneous  data. For  example, if 
the first .hypothesis  were  true, all the  data would be  invalid  because  in  the  absence of 
surrounding  objects, e.g. , in space,  there would be  no  interchange of charges  possible. 
The  second  and  fourth  hypotheses would affect stable  performance  because  the  tempera- 
ture  rise associated  with  the glow spray would cause a lowering  in  propellant  viscosity 
and  resistivity  and a rise in  vapor  pressure.  All  these  variations would result  in uncon- 
trolled  performance  variations. 

As there  was no apparent way to  remedy glow spray due to  charge  interchange  and 
particle  collisions,  efforts  were  directed  to  reducing  evaporation of the  propellant as 
a means of eliminating glow spray. It was theorized that i f  glow spray were due pr imar-  
ily  to a high  vapor  pressure o r  excessive  propellant  surface area exposure, a simpler 
solution was possible. 
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Figure  26-Performance  curves  for AS-35. V ,  = 15.75 to 18 kV, VeXt  = - 2 kV, Vscr = + 45 V, propellant 
No. 2 I was  used,  and P ,  = 60 mrrl Hg. 

Thruster Geometry Variations 

The first step  taken to eliminate glow spray  was  to  examine  the  thruster  used  in 
AS-35 and  measure its annulus  gap.  From  Figure 30 the  gap  measures 0.006 in. , which 
is approximately 0.004 in. larger than  the  design  gap.  This  widened  gap  evidently re- 
sulted  from  successive  rim  polishings.  The effect of this larger annulus area is a la rger  
propellant surface area exposed  to  the  vacuum.  Since  one  factor  affecting  evaporation is 
surface area, more  propellant  was  evaporating, which  could resul t   in  a local  atmosphere 
sufficient  to  cause glow spray. 

To  determine  the  validity of this  theory a new thruster  was  made of 20Cb-3 stainless 
steel with an annulus of 0.0017 in. (Figure 31). Test AS-37 was  conducted  using  propel- 
lant No. 22. A hood was  used  to  darken  the  chamber,  and  the  rim of the  thruster  was 
observed  for signs of glow spray.  Between  values of VS from 10 to 11 kV,  glow spray 
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Figure  28-Annular  rims  after AS-35. 

was  initiated  in  one  spot on the  thruster  rim.  After 1-1/2 hours V ,  could  be raised  to 
13.5 kV without glow spray.  After  approximately  another  hour  was  raised  to  15 kV 
without glow spray.  This  was  the  maximum Vs value  that  could  be  used  without glow 
spray. At this  point a TOF  was  taken,  and  the  data  were  presented  in  Table 3 .  Per- 
formance  was  very  low;  however , the flow rate was  higher  than  normal.  Slight  erosion 
was  noticed when the rim  was  examined after the test (Figure  32). 

An interim test was  conducted  to  determine glow spray  visibility  in  complete  darkness 
and in a lighted  room.  The  thruster Vs was  raised  to a level at which there w a s  extreme 
glow spray (IS M 7 0 0 ~ A ) .  In  darkness  there was  no difficulty  in our observing  the  beam, 
but  in a lighted  room, th'e glow spray  was  difficult  to see. As a result  darkroom  shades 
were  ordered  for  the  laboratory s o  that  the glow spray  could  be  observed  more  readily. 

Another  interim test was  conducted  to  determine effects on glow spray  from  changes 
in  the  radius of the  rim.  One test was  conducted  with a 0,0001-in.  radius  and  the  other 
with a 0,0005-in.  radius. Glow spray  appeared at about  12 kV in  both cases. During 
this  testing it was  noticed, as in  other  tests,  that  the  feedline  inside  the  chamber  acquired 
a dark  coating  and  was  warm.  Because  this  line is at V . ,  it is possible  that  electrons 
bombarded it during  the test which  caused  heating of the  line  and  propellant  and  affected 
flow rates and  performance. 

A  thermometer  was  inserted  in  the  feedline  to  determine its temperature  rise,  and 
test AS42  was  run.  Four test points  were  taken  under  non-glow-spray  conditions. Per- 
formance  was  higher  than AS-37, but still too low to be acceptable.  After  105  minutes 
the  feedline  temperature  had  risen 27 Fahrenheit  degrees.  A  screen  shield  was  made  and ' 

placed  around  the  feedline  and  biased at -2  kV. 
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Figure  29-Depcsit on outer  rim  after AS-35. Figure  30-The  0.006-in  annulus  gap. 

Figure  31-The  0.0017-in.  annulus gap. Figure  32-Annular  rims  after AS-37. 
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Test AS43   was  conducted to  determine  the effect of this  wire  shield.  After 90 
minutes of operation at a Vs of 15 kV , there  was no rise in feedline  temperature,  which 
verified  the  electron  bombardment  theory;  however,  another  important  observation  was 
made. Is and IC were,  respectively, 100 PA and 20 PA lower for test AS-43 than  for 
test A S 4 2 ,  which was  conducted  under  conditions  identical  with A S 4 3  except  for  the 
negative  wire  shield.  This  indicates  that  in  previous tests a large percentage of IS was 
due to  the  electron  impingement  on  the  feedline,  which  caused a fictitiously  high  current. 
Examination of the  thruster  after  the test indicated no erosion.  All  subsequent tests 
were run with  the  wire  shield. 

As a result  of tests AS-37 through A S 4 3 ,  it was shown that  acceptable  performance 
without glow spray could  not  be  obtained  through a reduction  in  exposed  propellant  surface 
area in the  annulus, a variation  in  rim  radii,  and  the  elimination of propellant  temperature 
rise due to  feedline  bombardment  by  electrons. 

Propellant  Investigation 

The  second  step  in  the  investigation  to  eliminate glow spray  was  to  develop new 
propellant  combinations  with  lower  vapor  pressures  than  NaI-glycerol.  This  measure 
was  based on  the  same  assumption  that glow spray is caused by excessive  vapor  accumu- 
lating  in  the  vicinity of the  thruster  r ims. 

The  first  step  taken  was  to  investigate a number of low-vapor-pressure  solvents 
and  solutes. 

Table 4, in  addition  to  the  standard  glycerol  solutions,  contains  the  solute-solvent 
combinations  that  become  conductive.  Only  solvents  with  lower  vapor  pressures  than 
glycerol  were  considered  in  this  investigation. Many solvents  and  solutes were tried 
which were not suitable for various  reasons. Among  the  solvents  that would not  dissolve 
solutes o r  become  conductive  were  the  silicone  oils, Santovoc-5 oil, Convoil 20 oil, 
Octoil,  and Duo Seal  oil. A solvent  that  became  slightly  conductive  but  not  enough  to 
consider for a test  was  65  Quanta  Lube. 

The  solutes  used for  doping purposes  were  sodium  tetraethylenediamine  tetraacetate, 
sodium acetate , benzyldimethylphenylammonium chloride , phenylhydrazine  hydrochloride , 
Dibutyldichlorotin , lithium  chloride , ammonium  chloride , sodium  bromide , sodium 
iodide , cesium  carbonate,  cesium  chloride,  cesium  fluoride , sodium  chloride,  sulfuric 
acid,  polyphosphoric  acid, acetic acid,  tetraethyl  ammonium  chloride,  tetraphenyl  tin, 
di-n-butyl  tin  diacetate,  sodium  hydroxide,  sodium  nitrate,  nitric  acid,  zine  chloride, 
laurylisoquinolinium  bromide  (No. 503) , diisobutylphenoxyethoxyethyl dimethylbenzyl 
ammonium  chloride  (No. 488) , and  octadecyltrimethyl  ammonium  chloride (No. 474). 

Several  problems  were  encountered  with all combinations  not  listed  in  Table 4. 
These  included  insolubilities,  chemical  reactions,  increased  viscosity,  high  resistivities, 
reverse  solubilities,  and  precipitation of the  solutes.  Figures 33 through 36 are curves 
depicting  the  variations of resist ivit ies of various  solutes  dissolved  in  the  three basic 
solvents  used  (Carbowax-400;  glycerol;  and  1,2,6-hexanetriol). 
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Table 4 - Propellant combinations. 

Propellant  solutions 
(mixed  and  degassed  under  vacuum) 

Vapor  pressure 
of solvent 

No. (mm  Hg, OF) Solvent Solute 

1. 

4.6  gm  Phenylhydrazine 9. 

11 gm  CsCl 8. 

3 gm NH4CI 7. 

5  gm NaOH 6. 

14.3  gm  NaBr 5. 

5.7  gm  LiCl 4 .  

6  gm  NaN03 3. 

10  gm NaI 2. 

5  gm  NaI 

hydrochloride 

10. 

30 gm NaI 16. 

33 gm  Dibutyldichlorotin 15. 

9  gm  NaI 14. 

4  gm  NaI-No.  488 13. 

7 . 5  gm of No. 474 12. 

460 drops of No.  488 11. 

462 drops of No.  503 

I 
17. 

20 gm NaI 23. 

35  gm  NaI 22. 

43  gm  NaI 21. 

30 gm NaI 20. 

37 gm N a I  19.  

35  gm N a I  18. 

5  gm NHdCl 

100 ml  Carbowax-400  (Polyethylene  glycol) ' 

1.5  x lo-',  122'F 100 ml Carbowax-400  (Polyethylene  glycol) 

1 . 5  X lo-',  122'F 100  ml  Carbowax-400  (Polyethylene  glycol) 

1 .5  x lo-', 122'F 100  ml  Carbowax-400  (Polyethylene  glycol) 

1 .5  x lo-', 122'F 100  ml  Carbowrtu-400  (Polyethylene  glycol) 

1 . 5  X lo-',  122'F 100 ml Carbowax-400  (Polyethylene  glycol) 

1 . 5  x lo-', 122'F 100  ml  Carbowax-400  (Polyethylene  glycol) 

1 . 5  x lo-',  122'F 100 m l  Carbowax-400  (Polyethylene  glycol) 

1 . 5  X lo-',  122'F 100 ml Carbowax-400  (Polyethylene  glycol) 

1 . 5  x lo-', 122'F 

100  ml  Carbowax-400  (Polyethylene  glycol) 

100 ml  Carbowax-400  (Polyethylene  glycol) 

1 .5  x lo-',  122'F 

100  ml  1,2,6-hexanetriol 

- 100 ml 1,2,6-hexanetriol 

< 1 0 - ~  100 ml  65  Quanta  Lube 

1 . 5  x lo-',  122'F 100  ml  Carbowax-400  (Polyethylene  glycol) 

1 . 5  x lo-',  122'F 100 ml  Carbowax-400  (Polyethylene  glycol) 

1 .5  x lo-',  122'F 

- 

100  ml  1,2,6-hexanetriol 

117  ml  glycerol 

120 ml glycerol 

100 ml glycerol 

125  ml  glycerol 

100 ml glycerol 

100 ml glycerol 

4 X lo", 122'F 

4 X 1 2 2 ' ~  

4 X lo",  122'F 

4 x lo*, 122'F 

4 X 122'F 

4 x 122'F 

Resistivity 
(0- c m ,  O F )  

Comments 

6600, 78'F 

4900,  77'F 

- 

- 4600, 77'F 

11 500,  77'F 

7400,  77'F Reverse  solubili ty  occurred 

47 000, 77'F 

6050,  77'F Reverse  solubili ty  occurred 

4600, 77'F 

18600, 77'F 

41000, 77'F 

24 000, 77'F 

17  500, 77' F 

8000,  77'F 

185000, 77'F 

280000, 77'F 

18 200, 77'F 

14  500, 77'F 

4650, 77'F 

3850,  77.5'F 

4500, 77'F 

4000,  79'F 

4300,  76.5'F 

5750,  77'F 

Reverse  solubili ty  occurred 

Reverse  solubili ty  occurred 

- 

- 
Very  viscous 

- 

Precipitated  out 
- 
- 
- 
- 
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Figure  33-Solution  resistivity of solutes  dissolved  in 100 ml of Carbowax-400. 



48( 

40C 

h 

E 
y 320 c 

c" 240 
v) 
w 
oi 

160 

80 

N H4C I 

0 

L l  , 
20 40 

SOLUTE (gm) 

60 80 

Figure  34-Solution  resistivity of solutes  dissolved  in 100 ml  of 1, 2, 6-hexanetriol. 

38 



csc I 
9 9 

- 10 CsI 

1 I I l l 1  I I I I I 

2 3 4. 5 6 7 8 9 1 0  20 30 40 50 60 70 
RESISTIVITY (k 0 -cm) 

Figure  35-Solution  resistivity of various  solutes  dissolved in 100 ml of glycerol. 



rp 
0 

h 1 \LAURYLISOQUINOLINIUM 
BROMIDE No. 503 

Dl-ISOBUTYLPHENOXYETHOXYETHYL AND 10 mm Hg 
DIMETHYLBENZYL AMMONIUM 
CHLORIDE No. 488 

n 
W I 

24 AT460 DROPS 

DROPS OF SOLUTE 

Figure 36 - Solut ion  resist iv i ty of l iquid  solutes  in Carbowax-400. 



AS45  was  the first test conducted  with a new propellant,  propellant No. 1, and  with a 
flow control  orifice. At a Vs of 19 kV there  was  no glow spray;  however,  performance 
was far from  acceptable.  The flow rate was  higher  than  with  the  glycerol  solutions, 
which  obviously  contributed  to  the low performance.  The  TOF trace is shown in Figure 37. 

Figure 37-TOF trace of AS-45-1. V ,  = 19 kV, I ,  = 75 pA,  
i = 5 pA/cm, and  the  sweep  was 50 psec/cm. 

Test   AS46  was  conducted  with  propellant No. 2.  Propellant No. 2 is propellant 
No. 1 doped  with  additional  solute fo r  a lower  resistivity.  The  orifice  was  removed, 
and a clamp  was  used on  the  feedline as a flow restrictor.  Test  points  46-1,  46-2,  46-4, 
and  46-5 were  taken.  Test  points 46-1,  46-2,  and  46-4  showed  slight  improvements  in 
performance  over  AS-45.  The  feedline w a s  clamped  tightly  to  stop all flow to  determine 
the  effect of reduced  flow. After 1-3/4 hours glow spray  commenced. At this  time test 
point  46-5 was  taken  with a resultant Isp of  1168 sec and  an ACMR  of 5738 C/kg.  The 
flow rate was down to  0.885 x lo-’ lb/sec  from a high of 7.75 x lo-? lb/sec. It appears 
that  performance  was  improving as ht was decreasing  until a point was  reached at which 
glow spray  began.  Again,  because of the  limited  understanding of the  exact  nature of 
glow spray,  a precise  explanation is not  possible.  However,  in  this  instance as fit 
decreased, glow spray could  have  been a result  of the  increasingly  higher  energy  parti- 
cles  releasing  more  electrons  from  the  collector  and  other  impact  surfaces  to  bombard 
the  thruster  rim  and  fluid  surface.  This  bombardment would result  in  higher  propellant 
temperature  and  vapor  pressure. 

Upon shutdown of this  test,  the  thruster  was  very hot  with  an  estimated  temperature 
of 150’F. A quick  check  showed  the  resistivity of this  propellant at 155- to  be  7000”cm. 
The  vapor  pressure of the  solvent  (Carbowax-400) at this  temperature is 3 X l o 9  m m  Hg. 
Both of these  could  certainly  have  been  the  cause of the glow spray. 

Examination of the  thruster after the test showed erosion on both rims  (Figure 38). 
The  TOF  traces are shown  in Figures 39 through  42. 
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Figure  38-Annular  rims  after AS-46, (a)  outer  rim i n  focus,  and (b) inner rim  in  focus. 

Figure 39-TOF trace of AS-46-1. V ,  = 19.25 kV, I ,  = 100 
FA, i = 10 pA/cm, and  the  sweep  was 20 psec/cm. 

Test A S 4 7  was  conducted  using  propellant No. 3 to  continue  investigation of the 
effect of the  propellant. VC, was  raised  to 20 kV with  no glow spray.  Performance  was 
again  poor.  The test was  terminated after 1-1/2 hours.  Examination of the  thruster 
after the test showed rim  erosion  (Figure 43). The  erosion is difficult  to  explain  because, 
unlike AS-46, there  was no glow spray  and  the  thruster was not  warm.  The  TOF trace is 
shown  in  Figure 44. 

A S 4 8  was  the  next test conducted  and  used  propellant No. 5 .  V, had to  be set at 
21.5 kV to  obtain  stable  performance. A s  shown in Table 3 ,  performance  was still low. 
After 1 hour, glow spray  commenced  and  the test was  terminated. A s  in AS-46, the 
r'hruster  was  very  hot.  Examination of the  thruster after the test showed severe   r im 
erosion (Figure  45).  The TOF trace is shown in Figure 11. 
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Figure  40-TOF trace of AS-46-2. V, = 20.25  kV, I,  = 100 
pA, i = 10  pA/cm,  and  the sweep was 20 p s e d c m .  

Figure  41-TOF trace of AS-46-4. V ,  = 18.5 kV, I ,  = 200 
FA, i = 20 pA/cm,  and the sweep was 20 p s e d c m .  

Testing  was  halted at this point so that  the  problem of thruster  erosion  could be 
investigated. Up through test AS-35 there had  been  no erosion as severe as that  which 
occurred  in later tests. Tests conducted after AS-35 were done  with  the new thruster .  
It was thought  possible  that  the  thruster  was  not 20Cb-3 stainless steel but  rather a less 
corrosive  resistant steel. An emission  spectrograph  analysis  was run on a sample  bar 
of 20Cb-3 stainless steel, the  old  annular  thruster,  and  the new one.  The  results  were 
identical,  which  proved  that  the  three  items  were of the  same  metal (i.e. , 20Cb-3 stain- 
less steel). Because  the  material  was  the  proper  one,  the  next  possible  explanation  for 
the  erosion would be  improper  heat  treatment of the  base  metal. To determine if this 
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Figure 42-TOF trace of AS-46-5. V ,  = 18 kV, I ,  = 230 pA, 
i = 50 pA/cm, and the  sweep  was 10 psec/cm. 

Figure 43-Annular rims  after AS-47. 

were  the  case, a destructive test would have  had to   be run on the  sample. A segment of 
metal would have  had  to  be  removed  and  then  subjected  to a polishing-etching  procedure. 
Since  this would have  meant  the  destruction of the  thruster,  this  analysis  could not  be 
considered. 
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Figure 44-TOF trace  of AS-47-4. V, = 20 kV, I ,  = 75 PA: 
i = 10 pA/cm, and  the  sweep  was 20 p s e d c m .  

Figure  45-Annular  rims  after AS-48, (a) outer rim  in  focus, and (b) inner rim  in  focus. 

It was  decided  to  plate all the new thrus te r   r ims  with  platinum  to  prevent  further 
erosion s o  that  the  program  could  continue  without  further  delay. 

Test   AS49  was  the first with  these  platinum-plated  thrusters  and  used  propellant 
No. 8. Above a Vs of 15 kV , a bluish-purple  glow spray,  unlike  the  typical  bright- 
orange glow spray when NaI is used as a solute , emanated  from  the  rims. At a & of 
20 kV there  was no discernible Is. After 1 hour  the test was  terminated.  Examination 
of the thruster  after the test showed  no erosion  (Figure 46). 

Test AS-50 was  the first evaluation of propellant No. 11, a surfactant  used as the 
dopant.  Performance  was  extremely  poor, which  may  have  been  due in part  to  the  high 
flow rate. The  TOF trace is shown  in Figure  47.  Examination  after  the test showed 
no  erosion (Figure 48). 
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Figure  44-Annular  rims  after AS-49. 

Figure 47-TOF trace  of  AS-50-1. V ,  = 19.5 kV, I, = 50 
PA, i = 1 pA/cm,  and  the  sweep  was 50 p s e d c m .  

Test AS-51 was  the first evaluation of a three-part  propellant  solution,  propellant 
No. 13. The  results  were  very  disappointing.  At a value of 20 kV of Vs, there  was  no 
discernable 1. and less than 1 P A  of IC. The test was  terminated after 1 hour.  Exam- 
ination of the  thruster after the test showed  no  erosion  (Figure 49) .  

Test AS-52 was  conducted  with  propellant No. 9.  Performance  was  low,  and at the 
maximum Vs value of 22 kV , no glow spray was noticed.  The  TOF trace is shown  in 
Figure 50. Examination of the  thruster after the  test  showed  slight  roughening of the 
rim;  however, it did  not  warrant  repolishing  for  the  next  test  (Figure 51).  
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Figure  48-Annular  rims  after AS-50, (a)  outer  rim in focus,  and (b) inner  r im  in  focus. 

Figure  49-Annular  r ims  after AS-51. 

Test AS-53 was run with  propellant No. 16.  Results  were  very  encouraging  because 
acceptable  performance  was  obtained at  a low VS without  glow spray.  The  TOF  trace is 
shown  in Figure 52. Examination of the rim  after  the  test  showed a slight  increase in 
roughening  (Figure 53) but  not  enough  to  warrant  repolishing . 

Although this test had  the  highest  performance of the  non-glow-spray tes ts ,  it also 
had  the  second  highest  resistivity (18 200 R -cm, 77OF). In all previous  colloid  testing, 
it had  been  accepted  that  performance  was  an  inverse  function of resistivity;  however, 
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Figure 50-TOF trace  of AS-52-1. V, = 22 kV, I ,  = 30 PA, 
i = 1 pA/cm,  and  the  sweep  was 50 ,usec/cm. 

( b) 
Figure  51-Annular  rims  (a)  before and (b) after  AS-52. 

the  above  results  showed  that  this  was not necessarily  true. Also it was  noticed  that  the 
value of fit was  one of the  lowest for the  non-glow-spray tests and  was  the  lowest fo r  
those tests involving  NaI-glycerol as the  propellant.  Before  pursuing  investigation of the 
NaI-1,2,6-hexanetriol  propellant, it was decided  to  reinvestigate  NaI-glycerol at lower 
flow ra tes  with a flow control  orifice. 
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Figure 52-TOF trace of AS-53-5. V, = 15.25 kV, I ,  = 50 
FA, i = 5 pA/cm,  and  the  sweep  was 10 p s e d c m .  

Figure  53-Annular rims after  AS-53. 

Flow Control Tests 

The  third  step  taken  to  eliminate glow spray  was  to  minimize  propellant  vaporiza- 
tion  due to  propellant  residence  time  in  the  thruster  annulus.  Calibrated  orifices  were 
used  to  control  the  flow rate considerably  below  the  level  that  was  originally  governed 
by  the  flow  annulus at 1.67 x lo-’ lb/sec.  Test AS-54 was  conducted  with  propellant 
No. 23 and a flow control  orifice  calibrated  for a flow rate of 0.5 x 10”’ lb/sec. 
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Three test points were taken, two  without glow spray  and one  with glow spray.  Test 
point 54-2 was  without  glow  spray;  point 54-3, with  glow spray.  Both are recorded  in 
Table 3 .  As  can  be  seen,  performance  was low  and  the  flow rates varied  from 3 . 6  to 8.3 
times  the  calibrated  orifice  value.  After  4  hours  the test was  terminated.  After  shut- 
down, the  thruster  was  warm  to  the  touch.  This  heating  effect  could  be  the  explanation 
for the  higher flow rates experienced.  Examination of the  thruster after the test showed 
no  increase  in  erosion  (Figure  54).  The  TOF traces for test points 54-2 and 54-3 are 
shown  in  Figures  55  and 56. 

Figure  54-Annular  rims  after  AS-54. 

Figure 55-TOF trace of AS-54-2. V ,  = 19.75 kV, I ,  = 50 
PA, i = 5 pA/cm,  and  the  sweep  was 20 p e c / c m .  
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Figure 56-TOF trace of AS-54-3. V, = 18.25 kV, I ,  = 125 
pA, i = 10 pA/cm,  and  the  sweep  was 20 pseclcm. 

A smaller  orifice  was  used  with  propellant No. 23 to  produce a calibrated flow of 
0 . 0 3  x lo-' lb/sec  in  an  attempt  to  further  decrease 6,. Test AS-55 was  conducted  with 
no glow spray  during  the  three test points  taken.  Points 55-1 and 55-3 are reported  in 
Table 3 .  The  results  were  again  low, with the flow rates varying  from 21 to 28 t imes 
the  calibrated flow. From  this  and  past  data it appears  that  the  desired low  flow ra tes  
will  not  be  obtained  until  the  propellant  temperature  can  be  regulated. A major  factor 
in  the  problem is the  heating of the  thruster  and  propellant by  the  apparent  back  bom- 
bardment of the  thruster  r im by electrons with the  subsequent glow spray  creating 
additional  heating. 

Unfortunately  the  effort  required  to  produce a stable flow rate was of such  magnitude 
as to  preclude  any  sophisticated  attempt at the  solution of this  problem  during  this  pro- 
gram. It would have  required  substantial  redesign  and  testing  to  minimize  electron 
bombardment  and a system by which  constant  propellant  temperature  could  be  maintained. 

A s  an  alternative it was  decided  to  forgo  testing of this  annular  thruster  and  to test 
the larger annular  thruster (Figure 4), where flow rates proportional  to  the  rim  circum- 
ference  could  be  more  easily  obtained.  That  is,  with  the  small  thruster  the low flow rate 
of 0.03 X lo-' lb/sec  was  chosen  arbitrarily. If it is assumed  that  firing  takes  place on 
the  outer  rim only (which is reasonable  based on  typical  erosion  patterns),  the flow per  
unit  length of r im  is 0 .113  X lo-' lb/sec  per  inch of circumference. With this flow rate 
parameter,  the larger thruster  would  have a total flow rate of 0 . 2 7  x lo-' lb/sec. With 
this  approach,  the  propellant  should  remain at the  r im  for a shorter  period of time,  and 
the  mechanical  problems  that arose in  attempting  to  achieve  and  maintain  the  very low 
flow rates  associated  with  the  previous  thruster  should not  be  incurred. 

As mentioned  in  the test section of this  report,  several  changes  were  made  in  the 
test apparatus  before  testing  the large thruster.  A stainless steel collector  completely 
surrounded by a grounded  screen (Figure 14) replaced  the  melamine  one,  and a thyratron 
zapper  circuit  replaced  the steel ball  zapper. 
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The first test with  the new thruster  was AS-56. Test point  56-1 was  taken at the 
beginning of the test and  shows  good  performance (Table 3).  The  total  flow rate was 
only 1.87  times  the  desired  one.  At  the  end of 4 hours,  glow  spray  began  and  the test 
was  terminated.  Visual  examination of the  rim  showed  no  erosion;  however,  the 
thruster  was  warm. Figure 57 is the  TOF trace of AS-56-1. One  observation  made 
during  the  glow-spray  operation  was  the  side  beam  divergence  angle (w 90") , which 
explains  the  high  ratio of Is/&. 

Figure 57-TOF trace of AS-56-1. V ,  = 19 k V ,  I, = 60 FA, 
i = 1 pA/cm,  and  the  sweep  was 10 psec/cm. 

AS-57 was  conducted  using a positive  extractor  plate  about  one-fourth of an  inch  in 
front of the  negative  extractor  plate.  The r,ttempt here  was  to  provide a means  by which 
the  beam  could be focused,  which  would  reduce  the  beam  divergence  angle.  The  attempt 
was  unsuccessful,  and  the  positive  plate  was  removed  for  the  succeeding tests. The 
TOF is shown  in  Figure  58. 

AS-58 was  conducted  using  the  NaI-lY2,6-hexanetriol  solution  (propellant No. 16). 
Four test points  were  taken  during  the  test,  which  was  terminated after approximately 
3 hours of operation  because of glow spray.  This test very  aptly  demonstrates  the 
degradation of performance  due  to  propellant flow rate increase.  Again, as in  previous 
tests,   there is strong  indication  that  the  propellant's  temperature  was  raised by electron 
back  bombardment.  As  the  assumed  electron  back  bombardment  continued,  the flow rate 
increased  with a resultant  decrease  in  performance.  Finally  the flow rate and  vapor 
pressure  reached a point at which glow spray  commenced.  This  progression is reflected 
in  test  points  58-1  through 58-4. 

It is interesting  that  the  ratio I . / l c  decreased  from  18.7  for AS-56-1 to   7 .35  for  
AS-58-1, which  was  run at a Vs of 3 . 5  kV lower  than  that  for AS- 56-1. The  TOF traces 
for  AS-58 are shown in  Figures  13,  59, 60, and 61. 
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Figure 58-TOF trace of AS-57-2. V ,  = 19 kV, I ,  = 45 PA, 
i = 1 pA/crn,  and  the  sweep  was 50 pseclcrn. 

Figure 59-TOF trace of AS-58-1. V s  = 15.5 kV,  I, = 50 PA, 
i = 2 pA/crn,  and the  sweep  was 20 psec/crn. 

Unlike  the resul ts  of glow spray  on  performance in previous  NaI-glycerol tests 
(AS-35-9 through 35-21) , where q / m  and Isp increased, it is seen  here  that q / m  and 
Isp decreased with increased  glow  spray. A possible  explanation is that  in tests AS-35-9 
to 35-21 as the  glycerol  became  hot, its vapor  pressure  became  sufficiently high to  evap- 
orate  before it was sprayed  from  the  rims.  Thus  the  vapor  pressure  was  not  reflected 
in I, and,  consequently, f ie. However, as the  1,2,6-hexanetriol  became  hot,  the  pre- 
dominant  change  was  reflected  in  increased flow rate  rather  than  increased  evaporation. 
Therefore I, increased,  which  reflected  an  increase  in 6,. This effect is shown in 
Table 3. Figures 60 and  61  also  show a pronounced  increase  in  slow  particles at the tail 
end of the  TOF traces reflecting  lower g/m's and  higher Ae. 
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Figure 60-TOF trace of AS-58-3. V, = 14 kV,  I, = 270 pA, 
i = 10 pA/crn,  and  the  sweep  was 20 pseclcm. 

Figure 61-TOF trace of AS-58-4. V, = 17 kV,  I, = 350 PA, 
i = 10 pA/cm, and the  sweep  was 20 psec/cm. 

Examination  after  the test showed  the  thruster body to  be at room  temperature, 
which is reasonable  considering  the .large thermal  mass of this  thruster.  However, 
localized  heating of the  meniscus is possible  without its being  substantially  reflected 
in  the  thruster  mass. 

This test closely  ties  together  propellant  heating,  increased flow rate,  and  the re- 
sulting  decrease  in  performance.  Whether  the  results of glow spray in this test or  those 
of test AS-35 are examined,  the key factor  that  needs  rigid  control  seems  to be propel- 
lant  heating,  and at  this  time  the  most  apparent  cause for the  heating is electron  back 
bombardment. 
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CONCLUSIONS 

The  major  effort of this  program  was  concerned  with  obtaining  acceptable  thruster 
performance  without  the  visible  observance of glow spray at the  thruster  r ims. 

Efforts  to  accomplish  this by  minimization of exposed  propellant  surface area, 
variation of rim radii  (changing of local  field  intensity) , and  elimination of feedline tem- 
perature rise (AS-37 through AS-43) were  largely  unsuccessful. 

The  attempts  to  achieve  this  through  the  reduction of propellant  evaporation by the 
use of low-vapor-pressure  solvents (AS-45 through AS-53) were,  except  for one  propel- 
lant combination,  generally  unsuccessful.  This  one  exception (AS-53-5) was  accom- 
plished  with  the  lowest  flow rate among  the  non-glow-spray tests. It was  the first 
indication of a link  connecting  performance  and glow spray. 

Tests  conducted  with  the  standard  NaI-glycerol  solutions  and  using flow control 
orifices  to  duplicate  the low flow rate achieved  in AS-53-5 were  unsuccessful  because of 
the  inability  to  control  localized  propellant  heating  and  resulting glow spray,  apparently 
caused by the  back  bombardment of the r ims  by electrons.  The  viscosity of 1 , 2,6-  
hexanetriol is more  stable  than  that of glycerol  during  variations  in  temperature,  which 
may be  the  reason why the low flow rates were  maintained  in AS-53-5. 

Tests  with  the larger  annular  thruster  using  glycerol  and  1,2,6-hexanetriol 
solvents doped  with sodium  iodide  confirmed  the  previous  indications  that a flow ra te  
much  lower  than  the  design  value  (Table 1) is required  to  achieve  the  performance  goals 
of q / m  and Isp presented in Table  2. A s  a result  of this  necessarily low  flow rate, a 
reduction  in  thrust is suffered.  This is not detrimental,  however , because  the  thrust 
level  can  be  raised by  the  use of a multiple  arrangement of thrusters .  

One remaining  problem is the glow spray  that  occurred after the  successful  per- 
formance of both  the  small  and large thrusters (AS-53 and AS-58). It appears  that if 
the  non-glow-spray  performance is sustained at a high q / m  value  for a given  duration, 
glow spray  eventually  commences. A possible  explanation  for  this is that  the  high- 
energy  particles release secondary  electrons  from  various  impacted  surfaces  that find 
their way back  to  the  exposed  rim  and  propellant  surfaces, which results  in  heating  and 
causes  increased  propellant  evaporation, flow rate , and  propellant  conductivity. 

Based on  the  results of this  program,  to  obtain  the  desired  performance  goals of 
q / m  and Isp under  non-glow-spray  conditions,  the  following  suggestions seem  to be 
promising  means of solving  the  problem: 

(1) Use of sodium  iodide  and 1 , 2,6-hexanetriol as the  propellant. 

(2)  Reduction of flow rates until  the  desired q/m and Isp are obtained  and  com- 
pensation  for  the  thrust  reduction by means of multiple  thrusters. 

(3) Use of a center  negative  extractor  (Reference 7) to  reduce  the  heating effect 
caused by electron  back  bombardment. 
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TECHNICAgREPORTS: Scientific  and 
technical  information  considered  important, 
complete, arih a  lasting  contribution to existing 
knowledge. 

TECHNICAL  NOTES:  Information less broad 
in  scope  but  nevertheless of importance as a 
contribution to existing  knowledge. 

TECHNICAL  MEMORANDUMS: 
Information  receiving  limited  distribution 
because of preliminary  data,  security classificn- 
tion, or other  reasons. 

CONTRACTOR  REPORTS: Scientific  and 
technical  information  generated  under  a  NASA 
contract  or  grant  and  considered  an  important 
contribrltion  to  existing  knowledge. 

TECHNICAL  TRANSLATIONS:  Information 
published  in a foreign  language  considered 
to merit  NASA  distribution  in  English. 

SPECIAL PUBLICATIONS: Information 
derived  from  or of value to NASA activities. 
Publications  include  conference  proceedings,' 
monographs,  data  compilations, handbooks,;.', 
sourcebooks,  and  special  bibliographies. ' ' 

TECHNOLOGY  UTILIZATION 
PUBLICATIONS:  Information  on  technology 
used by NASA  that  may  be of particular .. 
interest in commercial  and  other  non-aerospace 
:Ipplications. Publications  include  Tech Briefs, 
Tcchnology  Utilization  Reports  and 
Technology  Surveys. 

Details  on  the  availability of these  publications  may  be  obtained from: 

S C I E N T I F I C  AND TECHNICAL I N F O R M A T I O N  O F F I C E  

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 
Washington, D.C. 40546 


